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Invariants and Nonequilibrium Density Matrices
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A new method of calculating nonequilibrium density matrices with the aid
of the quantum integrals of motion is proposed. The method is shown to
be very effective in the case of systems described by means of quadratic
Hamiltonians. The possibility of constructing phenomenological non-
stationary Hamiltonians for a wide class of dissipative systems is discussed.
The exact formulas for nonequilibrium density matrices of arbitrary
quadratic systems are obtained. The quantum problem of the motion of a
charged particle in uniform electric and magnetic fields in the presence of
a frictional force proportional to the velocity is solved exactly by means of
introducing the new phenomenological Hamiltonian.
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1. INTRODUCTION

In Refs. 1 and 2 a new method of calculating Green’s functions and equi-
librium density matrices of quantum systems with the aid of quantum
integrals of the motion was developed. The aim of the present paper is to
derive similar equations relating the time evolution of a density matrix to
the integrals of the motion of the quantum system under study. We use these
equations to obtain the exact formulas describing the time evolution of the
density matrices of the most general quadratic quantum systems and some
special examples of such systems.

For simplicity we consider in the present paper only nondegenerate
systems obeying Maxwell-Boltzmann statistics.

We consider a new general approach which enables us to give a phenom-
enological description of nonequilibrium processes in the framework of
quantum mechanics.
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The main problem in studying nonequilibrium systems is to describe
dissipative processes in the framework of quantum mechanics. The most
correct way to do this is to place the system considered in a large heat
reservoir and to calculate the evolution of the enlarged system. After this
the density matrix of the system under study can be obtained by means of
integrating over the variables of the reservoir.® This method was used, e.g.,
in a recent paper® for calculating the exact nonequilibrium density matrix
of a particle in a uniform electric field. However, the calculations in the
framework of this scheme can be made exactly only in few cases. Therefore,
although there are several elegant and effective methods which enable one
to obtain the'approximate expressions for the nonequilibrium density matrices
for arbitrary Hamiltonians and arbitrary weak external fields, such as Kubo’s
method and others,®-*-9 the elaboration of simple and effective methods in
the theory of nonequilibrium processes is still a topical problem.

Besides microscopic methods, many authors have considered other
methods which can be called phenomenological. Although phenomenological
approaches are not strictly well-founded, they are simpler from the viewpoint
of calculations, and they yield rather reasonable results in many cases. For
example, one can consider non-Hermitian Hamiltonians with complex
coefficients leading to damping.” Another approach is to consider various
nonlinear generalizations of the Schridinger equation (see Refs. 8-10 and
references therein). The second method is usually applied to obtain a satis-
factory explanation of the experimental results on nuclear collisions.

Many authors have considered nonstationary Hamiltonians to describe
phenomenologically friction in quantum mechanics. (See, e.g., the earlier
references 1113 and the more recent references 14-18 and references therein.)
All such Hamiltonians had the form

H= (P, Pase-s D)™ + @(R1, La,e.ny Xy)e™ 1)

The Hamiltonian (1) leads to the following classical equations of the motion:

2
$io = —T%, — Z s — & k=128 @

Therefore T is the friction coefficient. However, the Hamiltonian (1)
only describes systems with potential forces (besides frictional ones). It is
of interest to find such Hamiltonians that describe damping in systems with
nonpotential forces, e.g., for a particle in an external magnetic field. This
problem was not considered earlier, but it can be easily solved if one takes
into account Havas’ results.*® Havas has shown that for a wide class of
systems of ordinary differential equations one can always find an equivalent
system of equations that are Fuler’s equations for certain Lagrangians.
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Using his method, we show how to construct the nonstationary Hamil-
tonians describing arbitrary systems with forces depending linearly on the
velocities and coordinates. To illustrate the general scheme, we consider
the Hall effect by means of the new approach.

2. THE APPLICATION OF INTEGRALS OF MOTION FOR
CALCULATING DENSITY MATRICES OF
QUANTUM SYSTEMS

Let us consider an arbitrary quantum system with N degrees of freedom.
The set of generalized coordinates (x;,..., xy) will be designated by the vector
x, and the set of generalized momenta (py, ps,..., px)} by the vector p. An
operator I(t) is called the integral of the motion if it satisfies the equation
[A(t) is the Hamiltonian of the system]

it &)t — H(), I(t)} = 0 3)

in the space of functions ¢ satisfying the Schrédinger equation and necessary
boundary conditions.
If the evolution operator U(t) satisfying the equation

ihoUjor = AO, t>0; U@0)=E 4)

(E is the unit operator; the initial moment always will be chosen to be equal
to zero for convenience) were known, the statistical operator g(¢) (the density
matrix is the kernel of this operator) at the moment 7z > 0 could be calculated
by means of the formula® (provided the Hamiltonian is Hermitian)

A1) = U0pU~2(t);  po = 5(0) ©)

However, if a sufficient number of integrals of the motion is known, the
evolution of the density matrix in time can be determined with the aid of a
more direct method which does not require the preliminary calculation of
the evolution operator.

Let us consider an arbitrary system of 2N operators f;, j = 1, 2,..., 2N.
Let us introduce another set of operators ¢;,j = 1, 2,..., 2N, related to ﬁ
and the initial statistical operator g, as follows:

130 = poP; f= (fl,fz,---’fzzv)a & = (‘f’la Paseees Pon) (6)

The operators ¢; always exist provided the operator 5! exists: ¢ = gg 1fﬁo.
In particular, if the initial density matrix can be expressed in the form

fo = eXP('":BHo) (62)

where £ is a certain parameter (in the equilibrium case 8~* is the temperature)
and H, is a formal “initial Hamiltonian,” the operator ¢ always exists.
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Moreover, it can be considered as the integral of the motion corresponding
to the Hamiltonian H, and depending on “time” B. At the initial “moment”

B = 0 this integral of the motion coincides with the operator f:

§ = exp(BH)f exp(—pH,) (6b)

Let us designate the integrals of the motion that coincide at the initial
moment of real time ¢ with the operators f and § by the symbols F and &,
respectively.

One can easily check that the operators F, f and U(t) are related as
follows:

F = 00t0-1) Q)
Therefore the following relations hold:
Fa(t) = OF0 10p,0 -1 = OfpeU~1 = Upop U1 = p)® (8

Proceeding to the kernel of the operator p(z) [the density matrix p(x;; Xo; #)];
one obtains the following vector equation (or the system of 2N scalar
equations):

Fop(xs; g5 1) = &'312)P(X1; Xp; 1) ©))

The symbol F;,p(X;...; X;;...) means that the operator F acts on the function
p as the function of the jth argument only, while the other arguments are
considered as parameters; for example,

Fop(x;y) = f F(y; x)p(x; x') dx’

[F(y; x') is the kernel of the operator F]. The symbol &7 means the transposed
operator with the kernel @(y; x), ®(x; y) being the kernel of the operator
&. The advantage of Eq. (9) consists in the following. In some cases the
integrals of the motion of the quantum system can be simply obtained, e.g.,
proceeding from the correspondence between classical and quantum me-
chanics or by means of some approximate methods. Then, solving Eq. (9)
is the simplest and most direct way to calculate the density matrix, because
no extra information such as the Green’s function is needed in this approach.
Note that, unlike the problem of calculating the Green’s function with the
aid of equations similar to Eq. (9),%'? when one has to know 2N integrals
of the motion, in the case under study one has to know in general 6NV integrals
of the motion: 4N of them correspond to the evolution Hamiltonian H(z)
and other 2N correspond to the initial formal Hamiltonian A,. However,
in many cases the operators ®, can be expressed in terms of F,, so that the
required number of integrals of the motion is again 2N.
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Equation (9) determines the density matrix up to an arbitrary factor
depending only on time (the variable ¢ in these equations is a parameter).
To calculate this factor one should take into account the equation for the
evolution of the density matrix

#H(0]0t)p(xy; Xg5 £) = [Hu) - FI<T2)]P(X1; Xg; 1) (10)
(which becomes an ordinary differential equation since the dependence of
the function p on x; and x, is already known) and the initial condition
p(0) = po. )

If one chooses as the operators f, the operators X and p and designates
the operators corresponding to them ¢; as § and &, respectively, then Eq.
(9) can be rewritten as follows (capital letters designate the integrals of the
motion corresponding to the operators X, P, §, and ®),

X(l) Y(Z))
P(X > Xg; ) - 0 (11)
(P(l) - H(2) ' ?

These equations were first used in Ref. 20.
Let us consider an example. Suppose that the initial density matrix
po 1s given by
po = exp[—da(x; — x5)°] (12)
Using the identity

X exp[——% (x; — xz)z] = (x2 + = 1 33( ) exp[ =(x; — xg)z}

one obtains §7 = R + ip/fia; therefore § = & — ip/fia. Analogously, since
(0]0x, + 8]0x,)pe = 0, one obtains & = p. Consequently, Eq. (11) in the
case under study has the following form:
X(l) - X7 - (i/ha)lsT](z))
- p X3 Xg;2) =0 (13)
( P(l) _ P(Tza) P( 1 2
Let us turn on at the moment ¢ = 0 the uniform constant field &. The

quantum integrals of the motion X and P in this case coincide with the classical
ones:

5 o . o o t &1

P=p-6r X=%-p_+- (14)
(m is the mass of a particle). Assuming ¢ = m/B#A? (this means that the initial
state was an equilibrium state at the temperature 8~*) and substituting the
operators (14) into Eq. (13), one obtains the following equations:

it o

X, — Xy + —
(1 2t ok T

B+ i) - ’—5—’3&);@, x531) = 0
(15)

o

7 0
(ax ax) (XlaXZa t) _0
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The second of these equations means that p = p(x; ~ X,). Then the first
equation immediately leads to the result

ol i ) = exp| -2 B ] g

[In the case considered Eq. (10) is reduced to the form dp/8t = 0.] Evidently,
the calculations in this example are much easier and more elegant than the
tedious integration by means of the formula (5).

3. NONEQUILIBRIUM DENSITY MATRICES OF
QUADRATIC SYSTEMS

The most general quadratic N-dimensional Hamiltonian can be written
as follows:

~

H = 34B()4 + C()§

I

B is a symmetric block 2N x 2N matrix (the matrices B,, j = 1, 2, 3, 4, have
the dimension N x N); ¢, and ¢, are N-dimensional vectors. We consider
Hermitian Hamiltonians; therefore B and C consist of real elements.

The integrals of the motion X and P for quadratic systems are linear
functions of the operators % and p:

(8)=s0G) o0 A= (r3) =) o

Substituting (18) into Eq. (3), one obtains the following system of or-
dinary differential equations for the 2N x 2N matrix A(z) and the 2N-
dimensional vector A(z):

(dd)A(r) = ASB;  A(0) = Epy; I = (—EN 0) (19)

d/d)A(t) = AZC;  A®) =0

Eyisthe N x N unit matrix. The properties of the solutions to these equatlons
were discussed in Refs. 1 and 2.

The aim of the present section is to obtain the exact formula describing
the time evolution of the density matrix of the quadratic system with the
Hamiltonian (17) for ¢ > 0 that was in the equilibrium state for ¢ < 0. As
was shown in Ref. 1, the equilibrium density matrix of a quadratic system is
the exponential of a certain quadratic form (provided the system is steady,
i.e., the matrix B is nonnegative definite).
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In addition, p(X;; X5) = p*(X,; X,) due to the Hermiticity of the statistical
operator. Consequently, the initial density matrix can be expressed as
follows:

po(X1; Xo) = Kexp(—3x1a%; — X18%; — $X:a0%X; + dx; + d*X,) 20)
a=d g=¢g'
a and g are N x N matrices; d is an N-dimensional vector (the tilde means
transposition; the asterisk denotes complex conjugation; the dagger denotes
Hermitian conjugation).
One can check that the operators ¥ and II” introduced in the previous
section can be expressed in the case of the matrix p, given by Eq. (20) in
terms of the operators X and P:

97 = FEAHPT — a*XT + @¥]

" o _ 21)
17 = (g — ag ~1a*)XT — ag ~PT + ifi(ag ~*d* — d)

Substituting these operators into Eq. (11), one obtains a system of linear
differential equations in partial derivatives of the first order. The solution
to this system has the same form as (20) but with new coefficients a’, g’, and
d’. To find these coefficients it is sufficient to obtain the dependence of
p(Xy; X,) on only one argument (X; or X,), due to the relation p(X;; X,) =
p*(x5; x;). The calculations lead to the following formulas [to obtain these
formulas one should take into account that the elements of the matrix A(r)
satisfy several identities following from the relation ATA = Z]42:

a' = (i) [Ae — (lix*g A5 1] 22)
g = (AT xAs* (23)
4" = (@A (xy — 82) (24)

We have introduced the following notation:
$=a+ (it =3
x=0%eWY—gHt=x (25)
Y=¢g 7 —w¥ p=d - @A)E - LA3T8)

The preexponential factor K’ can be obtained from Eq. (10):

t
K = Kexp{ f [~ Im(Tr(ba’) — d'6,d") — 2¢, Re d'] dr} (262)
4]

= K[det(#i®A’gx 1]~ expQug e + I¥Y* ¥~ gx*y*) (26b)
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The formulas (22)-(26) were obtained (in other notations) in Ref. 20,
If the initial matrix p, has the form (12),i.e.,d = 0,a = —g = aEy, then
the formulas (22)—(26) can be simplified:

@' = adT'ATE + (IR)AT A an
g = —aA[U7Y; @ = —(iA8;; K = K(det A)"?

Therefore in this important special case one only has to calculate the matrices
A; and A, and the vector &; . Physically the result (27) means that if the system
was in the spatially uniform state [po(X; X) = const] at the initial moment,
it will stay in the spatially uniform state at all subsequent moments [with
the space density K’ = K(det A;)"].

4. PHENOMENOLOGICAL HAMILTONIANS FOR
DISSIPATIVE SYSTEMS

The essence of the phenomenological approach to nonequilibrium
processes consists in the following. Starting from the known classical
equations of motion of the dissipative system, one tries to describe this
system in the language of Hamiltonian mechanics. If this is possible, then
replacing the canonically conjugate coordinates and moments by the operators
one obtains the quantum phenomenological model of the nonequilibrium
system under study. In the present section we consider dissipative systems
that can be described by quadratic Hamiltonians.

Let us consider a classical system described by equations of motion of
the type

G(X;%;x;t)=0, i=1,2,...,N; G=(Gy, Gy, Gy) (28)

In the general case these equations cannot be derived from any
Lagrangian. However, one can try to construct an equivalent system of
equations

N
G/ = D> Fulk; x; )Gu(&;X;x;1) = 0, det||Fy| # 0. (29)
k=1

such that the solutions to Eq. (29) are the solutions to Eq. (28) and vice
versa, but the functions G, can be obtained from a certain Lagrangian
Lx; x; 0):

, @oL oL

= 5% o (30)

Havas“® proved that such equivalent Lagrangians can be found for a wide
class of functions Gy(X; X; x; ¢). Let us apply Havas’ idea to find the equiva-
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lent Lagrangian for the general system of linear differential equations, which
can be written in the matrix form as follows:

G=%X+ A)x + D()x + J(@) =0 3D
A and D are arbitrary real N x N matrices, and J(¢) is an arbitrary N-

dimensional real vector. It is natural to look for the equivalent Lagrangian
in the form of a quadratic form of x and x:

L=3Mx + IxW)x + xV()x + Rx +Skx; M=M; W=W
(32)
Therefore the matrix F = | F;|| must depend only on time. Substituting the

expressions (29), (31), and (32) into Eq. (30), one obtains the following
system of equations:

o~

F=M=F (33a)
FA=F+V-V (33b)
FD=V—-W (33¢)
FI=S—-R (33d)

If Eq. (31) has the Lagrange form, then F = E,; in this case Eqs.
(33a)—(33d) lead to the following restrictions for the matrices 4 and D:

A=—-4; D-D=4 (34)
To consider the general case it is convenient to rewrite Egs. (33a)-(33d)
(excluding the matrices V and W from them) as follows:

2F = F4 + AF (35
F(D — 44° — 34) = (D — }432 — 34)F (36)

Therefore the problem is reduced to finding the symmetric matrix F(¢)
satisfying both Eqgs. (35) and (36). Let us consider for simplicity the case
A = 0. Then the solution to Eq. (35) can be expressed as follows®:

F(t) = exp(3A4t) F, exp(lAt) (37

Evidently, if the initial matrix F, is symmetric, the matrix F(z) is also
symmetric. Equation (36) imposes the following restrictions on Fy:

FolexpGAD(D — 34%) exp(—341)

= [exp(—=34AD(D — $4)[exp(3A1)]F, (38)

Equation (38) is equivalent to the following set of equations:
Fo(D — 44%) = (D — 149F, (38a)
Fo[A, D] = [4, DIF,;  [A, D] = AD — DA (38b)

Fold, Dl, = [4, D].Fo;  [A, Dl = [A4,[4, Dl_il; n3>2 (38)
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Each of these equations independently has nonsingular symmetric
solutions for arbitrary matrices 4 and D. Indeed, since the matrices D and D
have the same normal Jordan form,®? D = fDf~, where fis a nonsingular
matrix. Then the matrix F = f + fis the required symmetric solution to the
equation FD = DF. However, the system of equations (38a)-(38c) in the
general case is incompatible. For example, if the two-dimensional matrices
Aand D’ = D — 1A4? are given by

0 d 0
Az(al )§ D’:‘(l )§ ay #0; dy # dy
as dg 0 d;

4, B} = (am(dlo— &) g)

then any matrix F satisfying both Eqgs. (38a) and (38b) has the only nonzero
element F,,; therefore it is singular.

Consequently, we arrive at the conclusion that in the general case the
system (31) cannot be replaced by an equivalent system with quadratic
Lagrangian.

We have no intention of deriving in the present paper all the necessary
and sufficient conditions for the compatibility of Eqs. (38a)-(38c). Instead
we consider some simple sufficient conditions. One such condition is

[4, D] = AEy (40)

(note that this is not a necessary condition) or its simpler variant [4, D] = 0.
A more general condition is

[A9 D]n =fn(D - %__AZ) (41)

where the f, are arbitrary functions.
If F satisfies the equations

FA = —A4AF, FD = DF (42)

then the system (31) can be reduced to the Lagrange form by means of a
time-independent transformation. Physically this means that Eq. (31) are
simply written in coordinate-free form: For example, the equations X = yo# [m,,
and y = — x5 [m, have no Lagrangian, while equivalent equations m, X = y#
and m,J = —x3# can be obtained from the usual Lagrangian L = (m,x* +
m,y%) + #'xp. One of the necessary conditions for the compatibility of Egs.
(42) is the equality of all elementary divisors of the matrices 4 and — 4.2V

The choice of the other parameters determining the quadratic form (32)
—the matrices W and V, and the vectors R and S—is not unique. The simplest
and most symmetric expressions for them are as follows:

= —V = LFA — AF), W = }(FA? — A2F) — FD
R=—-FJ, S=0

(39

(43)
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The Hamiltonian can be constructed as usual: H = px — L, p = 0L/ox:
H = ipF~'p — pF~'Vx + Ix(VF~'V — W)x — Rx (44)

For example, in the important special case of a spatially uniform system,
when D = 0, the equivalent Hamiltonian always exists and can be written
in the following simple form:

H = jplexp(—A1)]Mop + xMg exp(41)J (45)
with the symmetric nonsingular matrix M, satisfying the equation
MoAd = AM,

Considering x and p in Eq. (44) as operators, we arrive at the phenomeno-
logical quantum model of the classical dissipative system (31).

5. EXAMPLES

The simplest example is the case where the matrix A4 is proportional to
the unit matrix: 4 = T'"Ey. Then the equivalent Hamiltonian has the form
(1). Since such Hamiltonians have been considered in many papers,**—%
let us consider here another interesting example, which has not been studied
previously: the motion of a charged particle under the action of uniform
electric and magnetic fields and a frictional force proportional to the velocity.
The classical equations of motion are as follows (evidently, it is sufficient to
consider only the two-dimensional problem):

Go=yV+H#%x+Ty—8E(t)y=0 (46)
m=e=c=1; S = const

In this case the matrix D is equal to zero, so that the equivalent Hamil-
tonian is given by Eq. (45). The matrices 4 and exp(— At) are given by

4w (I‘ —Jf); exp(—Ar) = ( cos(£t) sin(éft)) @7

# T ~sin(#Ft) cos(s£t)
The matrix M, can be chosen as follows:
1 0
M, = 48
=0 _)) 48)

Therefore the Hamiltonian is given by
H = e ™[cos(#1))(ps> — p,°) — [sin(o€1)]p.p.}
+ e{[cos(HD)][Eo(1)y — &€1(1)x]
+ [sin(#D)][E(1)x + 1))} (49)
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Let us consider the simplest case, when the initial matrix p, has the form
(12). This means that for ¢ < O the external field is absent, and the system is
in the equilibrium state. Since the matrices b, and b, in the Hamiltonian
(49) are equal to zero, then A; = E,, A, = 0 (the sense of these matrices was
explained in Section 3).

Furthermore, since the Hamiltonian (49) is only a crude model of the
real physical system, the density matrix p(¢) may have a physical significance
only for large ¢, such that exp(—1I't) « 1, when the nonsteady-state process
caused by the sudden switching on of the external fields will end. Therefore
one only has to calculate the asymptotic formula for the vector 8,(¢) for
¢t » ', This formula has the following form:

8,(1) = J ‘ o (52(7) sin(#r) — &1(r) cos(#'r)

&(7) cos(#7) + Ex(7) sin(.%”'r)) dr + 0™ (50)

Using the formulas (27), one can obtain the following asymptotic expression
for p(t) [for simplicity we give the result only in the simplest case & = const;

r=(x, )l

p(ry;Tast) = po CXP[% 8,(t)(rs — 1'1)]

> It
= 5o exp(——% ﬁﬁ {[T sin(#1) — # cos(#1)]

X [Eo(x1 = X3) + E1(y1 — ¥9)]
+ [T cos(#t) + H# sin(FH 1) Eo(yr — y2) — €1(x — xz)]})

t>T- (51
The current density operator is
(]:x) _i [ﬁ, ({c)] _ e‘”( p‘,icos(.%"t) - 1311 Sil?(‘?ft) ) (52)
L) A y —Py cos(Ht) — Py sin(H1)
Consequently, the current density is

i=3we(risra) + §ep(rs; rz)]ln:rz

_ 6D (mz+ m)

= Pl D) 53
T2+ #? \-#&, + T6, 3)

One can easily see that Eq. (53) describes the Hall effect. This means that the
Hamiltonian (49), in spite of its very exotic form, leads to quite reasonable
results.
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In the special case % = 0 the density matrix (51) becomes

Tol't
psirsi ) = pooxp( ~gp 600 =3 = & = ml}, 15T 59

and formula (53) gives Ohm’s law j = p(x; x)['~1&.

6. CONCLUSION

The examples considered above show that both the method using the
integrals of the motion and the method using phenomenological Hamilton-
ians are useful tools for investigating a sufficiently wide class of nonequilibrium
quantum systems. These methods have many obvious defects, but they also
have evident advantages, the most important of which is the simplicity of the
calculations. Therefore these methods can be used for solving many interesting
physical problems—for example, for investigating galvanomagnetic proper-
ties of thin films (provided the film is approximated by a harmonic potential).
In addition, the exact formulas for the density matrices of quadratic systems
obtained in Section 3 enable one to study in detail nonequilibrium quadratic
systems from the microscopic point of view and to compare the resulits with
the results of the phenomenological approach and various known approxi-
mate methods.
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